Dynamic Risk Measures for Processes via Backward Stochastic Differential Equations Associated with Lévy Processes
نویسندگان
چکیده
منابع مشابه
Backward Stochastic Differential Equations Associated with Lévy Processes and Partial Integro-differential Equations
In this paper, we deal with a class of backward stochastic differential equations driven by Teugels martingales associated with a Lévy process (BSDELs). The comparison theorem is obtained. It is also shown that the solution of BSDE provides a viscosity solution of the associated system with partial integro-differential equations.
متن کاملFeynman-kac Formulas, Backward Stochastic Differential Equations and Markov Processes
In this paper we explain the notion of stochastic backward differential equations and its relationship with classical (backward) parabolic differential equations of second order. The paper contains a mixture of stochastic processes like Markov processes and martingale theory and semi-linear partial differential equations of parabolic type. Some emphasis is put on the fact that the whole theory ...
متن کاملStochastic Bounds for Lévy Processes
Using the Wiener–Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrat...
متن کاملNonlinear stochastic integrals for hyperfinite Lévy processes
We develop a notion of nonlinear stochastic integrals for hyperfinite Lévy processes, and use it to find exact formulas for expressions which are intuitively of the form Pt s=0 φ(ω, dls, s) and Qt s=0 ψ(ω, dls, s), where l is a Lévy process. These formulas are then applied to geometric Lévy processes, infinitesimal transformations of hyperfinite Lévy processes, and to minimal martingale measure...
متن کاملFractional transport equations for Lévy stable processes.
The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a system subjected to a Lévy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limits of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23060741